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Thermal Diffusivity and Conductivity in 
Low-Conducting Materials: A New Technique 
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A comparative method is presented, suitable to measure both thermal diffusivity 
and conductivity of low-conducting solids. The repeatibility of the measure- 
ments of thermal conductivity is 3%, whereas for diffusivity is 6%. Data for 
some low-conducting materials are given, consistent with those reported in the 
literature. 
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1. I N T R O D U C T I O N  

Recently a new method  of measurement  of thermal diffusivity in low- 
conduct ing materials [1, 2]  has been presented with the aim of reducing, 
to negligible levels, the uncontrol led heat exchanges between specimen 
and environment.  The method  uses a vertical cylindrical specimen with the 
lower base in contact  with a copper  disk: this acts as a heat source 
when an electric current is switched on in a surrounding resistive coil. The 
high conductivi ty of copper  ensures that, at any time, the instantaneous 
temperature is uniform th roughout  the disk and coincident with the 
temperature of  the junct ion of a thermocouple  inserted into the disk itself: 
such a feature would not  necessarily be true for a thermocouple  at tached to 
a low-conduct ing material, because strong instantaneous thermal gradients 
could be presents in this case a round  the junction. 

In the above method,  the thermal expansion of the specimen is 
recorded by means of  a capacitive cell: in this way, all the thermal field 
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detectors (namely, the thermocouple inserted in the copper disk and the 
capacitive cell) are out of the specimen and, therefore, produce no pertur- 
bation on the thermal field present in it. The accuracy is remarkably high 
for materials with thermal expansion coefficient larger than 0.5 x 10 5 K 1. 
Below this limit, the method fails. 

The purpose of the present paper is to provide a method for low- 
conducting, low-expanding materials, allowing, again, an experimental 
arrangement in which the thermal field detectors are external with respect 
to the specimen under study. 

2. PRINCIPLES OF THE E X P E R I M E N T A L  M E T H O D  

A schematic view of the apparatus, which is placed in a vacuum 
chamber, is shown in Fig. 1. The specimen P lies between two copper disks, 
D1 and D2. The lower copper disk works as a heat source: to achieve this 
it is surrounded by an insulating resistive wire J. Switching on the current 
generator to which J is connected, joule heat is transferred to D1. By 
changing the current in J, it is possible to vary in an arbitrary way the heat 
supplied to the specimen. Since the thermal conductivity of copper is very 
high, the temperature of D1 is essentially uniform, i.e., independent of the 
space coordinates throughout the disk: this means that the lower base of 
the specimen, which is in good thermal contact with D1, can also be 
considered at a uniform temperature. We have noted that a good thermal 
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Fig. 1. Schematic of the experimental arrange- 
ment for thermal diffusivity and conductivity 
measurements.  



Thermal Diffusivity in Low Conducting Materials 353 

contact is always easily realized by a thin layer of silver glue. A thermo- 
couple T~, inserted into D~, measures the temperature of the heat source: 
this thermocouple does not produce uncontrolled heat exchanges with the 
environment because heat losses or gains, if any, through the thermocouple 
leads, are automatically included into the heat source (see Ref. 1). 

The specimen P is surrounded by a hollow cylinder G, which is made 
of its same material. The distance between the specimen and the hollow 
cylinder is about 0.25 cm. During the measurement, the instantaneous 
temperature distribution on the inner surface of G is the same as that on 
the lateral surface of the specimen: therefore, G is a good thermal guard 
hindering heat losses from the lateral surface of P. 

The specimen and its thermal guard support the copper disk D 2 and 
the holow copper cylinder H, respectively: H acts as the thermal guard 
of D2. The temperature of D 2 is measured by a Chromel-Alumel thermo- 
couple T2 (0.0076 cm in diameter wire). We point out that the heat lost 
by radiation from the upper surface of D 2 can be rendered negligibly small 
if this surface is accurately polished: on the contrary, in the absence of D2, 
the dispersion of heat from the upper surface of the specimen (usually non- 
metallic, in this kind of measurement) would not be negligible at all. In this 
way, the only uncontrolled heat losses are produced by the thermocouple 
T2, but these losses can be greatly reduced through the use of very small 
diameter leads. The copper disk D2 also avoids the problem of attaching 
the thermocouple to the specimen; in such a case the distortion of the heat 
flux lines, produced by the termocouple junction, would greatly reduce the 
accuracy of the measurements. 

As shown in the following section, the simultaneous recording of 
the temperatures of the two thermocouples allows the determination of 
both the thermal diffusivity of the sample and the ratio of the sample 
conductivity to copper conductivity. 

3. M A T H E M A T I C A L  F R A M E W O R K  

Since the base of the specimen is uniformly heated and heat exchanges 
through the lateral surface are not allowed by the thermal guard, the 
problem is unidimensional. Let us introduce a coordinate system with 
the origin at the center of the lower base of the specimen. Let k and k' 
be the conductivities of the specimen and of copper, respectively, ~ and ~' 
the corresponding thermal diffusivities, and b the length of the specimen: 
the solution of the Fourier equation for a specimen subjected to conditions 
of constant heating rates S and S' through the two bases, namely, 

s=  -~(~O/ez)z=o (I) 
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and 

is given by 

S '=  -k(#O/Oz)z=b (2) 

O(z, t) = (kb) 1 ( S -  S')(~t + �89 2) - Sz/k + ~, an cos(n~z/b) exp( -nZ~2~t/b 2) 
n 

(3) 

This expression is an extension of the formula already used in Ref. 1. Let 
us introduce a new coordinate system z' with the origin at the center of the 
base of the upper copper disk O2: the solution of the heat conduction 
equation in 02, subjected to zero flux at the upper base of the disk (z' = d) 
and with heat flux 

S' = -k'(ctO'/Oz')z,=o 

at the lower base, is given by 

(4) 

n 

Let us impose the conditions 

where d is the length of the copper disk D2. 
To extend the solution to a general heating rate, the entire time 

interval of an experimental curve can be subdivided into many small inter- 
vals of equal width, each of them being characterized by constant values of 
S, S', depending, however, on the time interval itself. 

Let us indicate by Sm and S"  the heating rates referring to the interval 
between t m and tin+ 1, and by 0 m+ l(z, t) and O m  m +  I(Z', l) the corresponding 
temperature fields: one has 

0m+ I(Z, t )=(kb)  -1 (sin - S m ) ( ~ t  + �89 2) --  S m z / k  

+ ~, a,,m cos(n~z/b) exp(-om2~2t/b 2) (6) 
n 

t m + l  t 0 m ( z , t ) = ( k ' d )  'S 'm[Odt+�89 23 

+ ~ C,,m cos(n~z'/d) exp( -- ct'n2~z2t/d 2) (7) 

o~(~, o) = o (8) 

o t l l  t 0 tz ,  0 ) = 0  (9) 

O'(z', t) = (k 'd)-  IS' E~'t + �89 d) 2 ] + ~ cn cos(n~z'./d) exp( -or 2) 
rt 

(5) 
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and (for m > 1) 

O~_l(Z , t m ) =  ' ~+1"  v~ tz, t,~) 

0~n m- 1( Z, [m) ~- OIm m+ 1( Z, tm) 

Putt ing Om+l(z)=O~+l(z ,  tm+l) and O'm+l(Z')=O'mm+l(z',tm+l), 
obtains after s tandard analysis, for m > 1, 

, LZ2)__SmZ/k ore+ 1(~) = ( ~ b ) - 1 ( s ~ -  sm)(c~t~+ l + 2 

(10)  

(1~) 

o n e  

and 

- ( b / k )  

p = l  

+ ( b / k )  ~ M z ( t m + l - t ; ) ( S ; - S p  1) 
p=l 

- �89 - S'o) G=(tm+ 1) + (b/k) SoMz(tm+ 1) 

' S' [-c~t/b; + �89 - t . ) ] ( s~ -  s p -  s .  1 + ~-1) 

(12) 

011(Z ' ) = (k'd)-iSro[O~'tl  .-~ � 8 9  d)  2 ] - (S 'od/2k ')  Rz , ( t l )  ( 1 5 )  

where the functions G=, M= and Rz, are defined as follows: 

Gz(t) = (4/x 2) ~ [ ( -  1)"/n 2 ] cos(nxz/b) e x p ( -  cmzrc2t/b 2) + 1/3 
/7 

Mz(t)  = (2/~ 2) ~, [((  -- 1 )n _ 1 )/n 2 ] cos(nxz/b) exp( - c~nZx2t/b 2) + 1/2 
n 

R~,(t) = (4/~ 2) ~ ( 1/n 2) cos(nxz'/d) exp( - ~'n2xZt/d 2) + 1/3 
n 

c~ is the temperature  measured by the thermocouple  inserted Now if Om+ 1 
into the copper  disk at tm+ 1 ,  the boundary  condit ion between the disk DI 
and the specimen P is [-3] 

Cu l __ (Om+l) z=  0 S ~ / H  ( 1 6 )  Ore+ 

and 

~(Sod/k ) Rz . ( t~+,)  O-+l(Z,)=(k,d)-JS,m[C(tm+l + � 8 9  , , 
m 

- - ( d / k ' )  E (S'p t t 2 1Rz,([m + ( 1 3 )  - sp_ , )E~ tp/d + l - t p ) ]  
p = l  

and for m = 0, 

1 2 01(z) = (kb) 1(So - S'o)(C~tl + ~z ) - Soz /k  

-- �89 - S'o) Gz(tl ) + (b/k) SoMz(t  I ) (14) 
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where H depends on the nature of the thermal contact between specimen 
and copper. The boundary condition between D 2 and P is 

( O m +  1 ) z : b  - -  (Otto+ l ) z ' = O  = S ' m / H  (17) 

Using the parameters ?=k/(Hb), X=k'/k, X'=Xb/d and defining 
Qm = bSm/k, Q" = dS'm/k', the boundary conditions for m > 0 can be written 
a s  

c u  , , Om+l-~b 2(Q,~-X Qm)tm+l +b-2 ~ [etp+-~bl 2 G o ( t m +  l - t p )  ] 
p = l  

m 
X[Qp--Qp 1--X'(Qp--Qp_x)]-- ~ Mo(tm+l-tp)(Qp-Qp_l) 

(18) 
p = l  

+ �89 Go(tm+l)-mo(tm+l)Qo=TQm 

and 

2 t t 1 2 b (Qm-XQm)(O~tm+ ,+sb ) -Qm 

-b -2  ~ [~tp+�89 1)] 
p = l  

+ ~ Mb(tm+ 1-tp)(Qp-Qp 1)--~Gb(1 tm+l)(Qo-X'Q'o) 
p = l  

+ Mb(tm+l)Q ~ 2 , , d Qm(atm+l+�89 2) I t 
- -  + ~QoRo(tm+ l) 

+d 2 ~ (Q,p_Q,p 1)(~,tp+�89 (19) 
p = l  

while, for m = 0, one has 

OcU-~b 2(Qo-X'Q'o)tl +�89 o (20) 

and 

b 2(Qo-X'Q'o)(~t I + lb2)- Qo- �89 X'Q'o)+ Mb(tl)Qo 
1 2 1 r -- d-ZQ'o(Cdtl + ~d ) + ~QoRo(t~) = X'yQ'o (21) 

Although the previous theory, for the sake of generality, has been 
formulated so as to include the effect of the contact layers between copper 
and specimen, we now use Eqs. (18) (21) with 7 =0 .  This is in fact the 
appropriate choice of 7 for a low-conducting specimen in contact with 
a high-conducting material like copper: measurements of 7, for such 
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boundary conditions as published in Ref. 1, invariably lead to negligible 
values of this parameter. In these circumstances, assuming the copper 
diffusivity c~' to be known, we are left with two unknown parameters, 
namely, c~ and X'. 

The analysis of the experimental curves 0(1)(t) and 0(2)(t), as measured 
by the thermocouples T1 and T2, proceeds through the following steps: 

(a) Subdivide the total time interval into N parts of equal width 
= t , , ,+l- t in ,  and for each lm+ 1 read the experimental value of 

Cu the temperature Om+l= O(l)(tm+ 1) to  be inserted in Eqs. (18) and 
(20). 

(b) Impose a trial couple of values (c~, X'). 

(c) Solve Eqs. (20) and (21) with respect to Qo and Q;. 

(d) Solve Eqs. (18) and (19) with respect to the Qm'S and Q"s ;  a 
computer can be easily programmed for this operation, because 
having Qo and Q;, one immediately obtains Q1, Q2 ..... and 
Q'I, Q~ ..... from (18) and (19) written for m = 1, m = 2 ..... respec- 
tively, 

(e) Determine through Eqs. (13) and (15) the corresponding func- 
tion O'~.x,(d, t). 

(f) According to the least-squares principle, minimize with respect to 
c~, X' the square sum 

A = ~ [O'x,(d,  ti) - 012)(ti)] 2 (22) 
i 

The values of ~ and X' at the minimum are taken as the experimental 
determinations of these two parameters. 

4. EXPERIMENTAL PROCEDURE AND RESULTS 

The experiment is performed when the signals of the two 
thermocouples T1 and T2 are stable. Switching on in the coil J a current 
of the order of 1 A for about 30 s, one obtains a time behavior like that 
shown in Fig. 2, referring to a specimen of plexiglass at room temperature. 
This material appears particularly suitable to check the method, because, 
owing to the relevant value of the thermal expansion coefficient, its thermal 
diffusivity can also be accurately determined by the use of the dilatometric 
technique [1, 2]. 

Each copper disk in the present experiment was 10 mm thick, and the 
specimen was 2 m m  high, with a radius of 10mm. The corresponding 
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analysis of the two curves is summarized in Table I, where the behavior of 
A in the plane (e, X ' )  clearly shows the existence of a minimum. In this 
analysis the value adopted for c( was 0.93cm2.s 1 [4] ,  which was 
previously determined for the copper alloy employed to fabricate the two 
copper disks. 

The mean values of c~ and X',  as resulting from the average over 10 
different measurements, are ~ = 0.95 x 10 -3 cm 2- s -1 and X'  = 370, with 
standard deviations of 6 and 3 %, respectively. The value of ct is fully 
consistent with the result given in Ref. 2 (0.95 x 10 3 cm 2 " S 1). As shown 
in Table II, also the corresponding value of X =  (d/d)X' = 1850 is in good 

Table I. Behavior of the Square Sum A, Given by Eq. (22), as a Function of the 
Thermal  Diffusivity c~ and of the Reduced Conductivity Ratio X'  = k'b/(kd) 

for a Measurement  on Plexiglass at Room Temperature 

oc ( l O - 3 c m 2 . s  -1) 

X '  0.80 0.85 0.90 0.95 1.00 1.05 1.10 

360 0.10 0.12 0.16 0.21 0.28 0.35 0.43 
365 0.11 0.09 0.09 0.12 0.16 0.21 0.26 
370 0.16 0.11 0.09 0.07 0.10 0.12 0.15 
375 0.26 0.18 0.12 0.11 0.09 0.10 0.11 
380 0.41 0.30 0.21 0.16 0.12 0.I 1 0.10 
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Table lI. Experimental Values of the Thermal Diffusivity c< and of the Conducivity 
Ratio X= k'/k at Room Temperature, Compared with the Literature Values ~o, X0 

ct(cm2.s 1) X %(cm2.s -) Xo 

Fused silica 8.4 x 10-3 292 7.8 x 10 3 270 
Zerodur 10.5 x 10 3 243 - -  - -  
Plexiglass 0.95 x 10 3 1850 0.95 x 10 .3 1880 

agreement with the data available from the literature. The same table 
includes the results for two typical low-conducting, low-expanding 
materials (fused silica and Zerodur, a glass ceramic with thermal expansion 
coeff ic ient=0.5x 10 7K 1), for which the dilatometric method is not 
suitable. 

To compare these data with those reported in the literature, we 
present in the last column in Table II  the values of X calculated with the 
copper conductivity taken from Ref. 5 and the conductivities of fused silica 
and plexiglass taken from Refs. 5 and 6, respectively. The third column in 
the table lists the values of diffusivity as taken from Ref. 5 for fused silica 
and from the dilatometric technique, Ref. 2, for plexiglass. 

5. C O N C L U S I O N S  

The method presented in this paper  is simple and provides accurate 
measurements of the thermal transport  parameters of low-conducting 
materials. The accuracy is connected with the minimization of the uncon- 
trolled heat exchanges between specimen and environment, owing to the 
occurrence of the following circumstances: 

(i) the specimen is not directly in contact with the thermal detectors 
(thermocouples); 

(ii) the heat loss by radiation (usually high for nonmetallic 
materials) is eliminated from the two bases due to the presence 
of the copper disks and hindered from the lateral surface by the 
thermal guard surrounding the specimen. 

In this way, the method ensures a remarkable correspondence between the 
boundary conditions existing in the experiment and those assumed in the 
mathematical  solution of the heat diffusion equation. The failure of such a 
correspondence is the main source of errors in the measurements of thermal 
diffusivity. From this point of view, also our heat source is preferable to the 
laser beam usually employed in this kind of measurements, because in this 
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way we avoid the uncertainties connected with the spatial distribution or 
with the intesity fluctuations of  the beam: these are in fact responsible for 
large errors, estimated to be of the order  of  10% [-7]. 

A final comment  concerns the value of be assigned to the copper  
diffusivity c(. The numerical  analysis of a couple of  experimental curves 
(such as in Fig. 2) shows that  a relative change given to ~' is corre- 
spondingly found in the resulting value of k ' /k .  Consequently,  since the 
diffusivities of  metals can be determined within 1% [-4], the effect on X 
is expected to be lower than the uncertainty associated with the lack of 
repeatibility (see Section 4). The effect on ~, on the other  hand, is negligible 
because we find that  a relative change as high as 10 % in c~' produces only 
a 0.5 % change in the resulting value of ~. 
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